
747993_SHAANREHSI_A3

1. Implement the algorithm find_all() that returns a vector<T*> of pointers to all elements
that meet the criteria.

Using a vector<int> of 10000000:

ITERATION Elements Meeting the
criteria

Executed time
microseconds

1. 2993700 101319

2. 2993700 99691

3. 2993700 93513

AVERAGE TIME: 98174

The find_all() function takes a const std::vector<T>& data as input and a T threshold. The
function searches for elements in the input vector (data) that are greater than the given
threshold.

Using a vector<string> of 1000000:

ITERATION Elements Meeting the
criteria

Executed time
microseconds

1. 999990 30516

2. 999990 29634

3. 999990 27856

AVERAGE TIME: 29335

2. Build a 10-way parallel find_all(): given a vector, spawn 10 threads each running a serial
find_all() on a 10th of the elements and combining their results.

Measure its performance, excluding the thread creation. The easiest would be to make
threads set up to take messages from a synchronized queue or from a future

Using a vector<int> of 10000000:



ITERATION Elements Meeting the
criteria

Executed time
microseconds

1. 2993700 46064

2. 2993700 41363

3. 2993700 40580

AVERAGE TIME: 42669

Using a vector<string> of 1000000:

ITERATION Elements Meeting the
criteria

Executed time
microseconds

1. 39294 6882

2. 39248 6661

3. 39180 6840

AVERAGE TIME: 6794

To build a 10-way parallel find_all(): I used the std::async function to spawn 10 threads, each
running a serial find_all() on a tenth of the elements from the input vector. This allows the work
to be divided among multiple threads, making the search process parallel.

To exclude thread creation time I used a synchronized queue using std::mutex and
std::condition_variable to pass messages from the worker threads back to the main thread. This
ensures that the main thread waits for all worker threads to complete their tasks before
collecting their results.
To measure performance I used std::chrono to measure the execution time of the parallel
find_all() algorithm, providing the execution time in microseconds.



EVALUATION:

Each piece of code I ran has a fairly similar execution time although there is some variation.
This variation is due to factors like system load, thread scheduling, and background processes.
Although I only ran the code three times, the consistency of the execution time can conclude
that the parallel algorithm is performing well and relatively quick.


