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Setup:

For this experiment, I will be use the following data structures:
● std::list:
● std::vector:
● std::set:

Each data structure will be tested with three sets of elements, (100K, 200K and 300K) to
observe their performance characteristics as the sequence size grows. I will then test out the
data structures again but preallocate the list into the elements to see if their performance is
affected.

Hypothesis: Based on the characteristics of the data structures I predict that the performance
of the data structures will vary during the insertion and removal processes. Specifically, I expect
that std::list may outperform std::vector during insertions because it uses linked-lists, while
std::vector may be more efficient during removals because of its memory. I expect that std::set,
being used as a binary search tree, will show reasonably good performance for both insertions
and removals.

I also expect that the complementary experiment, where I will preallocate list elements, may
reveal insights into the impact of data structure size and memory allocation on overall
performance. I predict that the insertion times for all three data structures will significantly
improve.

Methodology:
● Generating:

I will generate N random integers so that duplicate values are not allowed in the generated
sequence. The numbers will be generated independently and saved into a separate array.

I will then insert the generated integers one by one into the target sequence while maintaining
the numerical order. To achieve this, I will use the insertion sort algorithm, which iteratively
places each new element in its proper position by comparing it with the existing elements in the
sequence.

● Removing
I will randomly select positions in the sequence and remove the element at that position.

To remove elements, I will traverse the data structures using a standard loop, instead of using
std::advance() to avoid unintended optimisations that might affect the results.



I will then measure and record the execution time for each removal operation at different
positions in the sequence.

Experiment 1: Testing the Data Structures

Std.vector

Iteration Insertion
time for
100k
sequence
(ms)

Removal
time for
100k
sequence(
ms)

Insertion
time for
200k
sequence
(ms)

Removal
time for
200k
sequence(
ms)

Insertion
time for
300k
sequence
(ms)

Removal
time for
300k
sequence(
ms)

1. 31730 408 128717 2052 439562 7238

2. 32712 380 133071 2171 395326 6126

3. 34173 395 133701 2093 452186 6777

AVERAGE
TIME

32872 394 131830 6126 429024 6714

Std.list

Iteration Insertion
time for
100k
sequence
(ms)

Removal
time for
100k
sequence(
ms)

Insertion
time for
200k
sequence
(ms)

Removal
time for
200k
sequence(
ms)

Insertion
time for
300k
sequence
(ms)

Removal
time for
300k
sequence(
ms)

1. 80635 29066 225449 44410 1621991 96079

2. 77243 22587 237799 44556 880106 112415

3. 83270 28875 206345 53878 908155 98382

AVERAGE
TIME

80383 26843 223198 47615 1136751 102292

Std.set



Iteration Insertion
time for
100k
sequence
(ms)

Removal
time for
100k
sequence(
ms)

Insertion
time for
200k
sequence
(ms)

Removal
time for
200k
sequence(
ms)

Insertion
time for
300k
sequence
(ms)

Removal
time for
300k
sequence(
ms)

1. 79 36086 188 94264 291 172549

2. 82 45724 199 103334 296 186798

3. 79 36760 179 128085 302 192447

AVERAGE
TIME

80 39523 189 108561 296 183931



Experiment 2: Preallocated Data

vector

Iteration Insertion
time for
100k
sequence
(ms)

Removal
time for
100k
sequence(
ms)

Insertion
time for
200k
sequence
(ms)

Removal
time for
200k
sequence(
ms)

Insertion
time for
300k
sequence
(ms)

Removal
time for
300k
sequence(
ms)

1. 252 250 1044 1450 2339 4424

2. 264 259 1032 1453 2394 4123

3. 247 248 1058 1521 2810 5596



AVERAGE
TIME

254 252 1045 1475 2514 4714

list

Iteration Insertion
time for
100k
sequence
(ms)

Removal
time for
100k
sequence(
ms)

Insertion
time for
200k
sequence
(ms)

Removal
time for
200k
sequence(
ms)

Insertion
time for
300k
sequence
(ms)

Removal
time for
300k
sequence(
ms)

1. 88 30838 115 36776 171 64519

2. 83 27977 108 36092 167 62192

3. 81 28724 104 38915 174 65212

AVERAGE
TIME

84 29180 109 37261 171 63974

set

Iteration Insertion
time for
100k
sequence
(ms)

Removal
time for
100k
sequence(
ms)

Insertion
time for
200k
sequence
(ms)

Removal
time for
200k
sequence(
ms)

Insertion
time for
300k
sequence
(ms)

Removal
time for
300k
sequence(
ms)

1. 49 23718 107 65412 214 117310

2. 51 26391 125 72669 182 124565

3. 48 23352 105 73191 250 151981

AVERAGE
TIME

49 24487 112 70424 215 131285





Conclusion for Experiment 1:

std::vector shows relatively faster insertion times compared to std::list, especially as the
sequence size increases. I believe this is because std::vector has contiguous memory storage
and can benefit from cache locality during insertions.

std::list shows slower insertion times, especially as the sequence size grows. This is due to the
overhead of managing nodes in a linked list.

std::set shows faster insertion times than std::list but slower than std::vector. I expected this, as
std::set is used as a self-balancing binary search tree.

For removal times, std::set shows better performance than std::list, especially as the sequence
size increases. This is because the tree structure of std::set allows for efficient and therefore
faster removals.

std::list:



Insertion: Inserting elements in a std::list is efficient as it involves only updating the pointers to
link the new element appropriately. However, finding the correct position for insertion requires
traversing the list.

Removal: it is implemented as a doubly-linked list, where each element is connected to the next
and previous elements through pointers. When removing an element from std::list, it is a
relatively straightforward operation because the linked list allows direct access to the previous
and next elements of the node to be removed.

std::list does not support random access, which means accessing elements by index is not
possible. To find the insertion position, I would need to traverse the list from the beginning,
which results in a slower time.

std::vector:
Insertion: To insert elements into a std::vector at a specific position the container needs to make
room for the new element by shifting all the elements that come after the insertion point one
position to the right. This is necessary to maintain the order of elements in the vector.

Removal: std::vector provides constant-time access to elements by index. When removing an
element from a std::vector, the process is more efficient because it has contiguous memory
storage, so accessing elements is very fast.

std:set
std::set exhibits the best insertion times among the three data structures for all sequence sizes.
This is as expected since std::set is implemented as a balanced binary search tree, which
allows for efficient element insertion while maintaining the sorted order. The average insertion
time for std::set is significantly lower than both std::vector and std::list.

Removal: std::set shows competitive performance during removals compared to std::vector and
std::list. Although std::vector performed better than std::set in the removal times for 100k
sequences, std::set demonstrated competitive removal times for the larger sequences. This
reflects the efficiency of the balanced binary search tree in std::set for element removals.

Comparing the data structures:
For the insertion part of the problem, std::list performs better because inserting an element into
a std::list is faster than inserting into a std::vector.

However, for finding the insertion position (during the insertion sort process), std::vector
performs better as it supports random access, allowing us to directly access elements by index,
which is much faster than traversing the list as required in std::list.

std::set appears to be the best data structure for efficiently tackling this specific problem of
inserting elements in proper numerical order and removing them randomly.



The actual results largely align with my expectations as both std::list and std::set performed as
anticipated, with std::list showing better insertion times and std::vector outperforming std::list in
removals. std::set exhibited competitive performance for both operations, as expected.

Surprising Result: Extremely fast insertion times for std::set.

The insertion times for std::set are significantly faster than both std::vector and std::list. The
average insertion time for std::set is only 80 ms for 100k elements, while std::vector takes
32872 ms, and std::list takes 80383 ms.

This result is surprising because std::set is implemented as a balanced binary search tree,
which typically has higher constant factors in its time complexity compared to dynamic arrays
(std::vector) and linked lists (std::list).

Surprising Result: Slow removal times for std::set.

While std::set shows very fast insertion times, its removal times are significantly higher than
expected. The average removal time for std::set is 39523 ms for 100k elements, while
std::vector takes only 394 ms, and std::list takes 26843 ms
.
This observation is surprising because std::set is designed to provide efficient ordered removals
due to its binary search tree structure. However, the actual removal times are slower than both
std::vector and std::list.

Expected Result: std::vector outperforming std::list in removals and std::list outperforming
std::vector in insertions.

The results show that std::vector performs better than std::list in removal times, and std::list
performs better than std::vector in insertion times. These observations align with the expected
characteristics of these data structures.

Overall, the surprising results are related to the extreme performance difference between
std::set and other data structures in insertion times, as well as the unexpectedly slow removal
times for std::set. The results show the importance of understanding the performance
characteristics of data structures in different scenarios to make correct decisions when choosing
a data structure to use.

Conclusion for Experiment 2:

In this experiment, I can observe the impact of preallocating the std::list before inserting
elements. The results demonstrate that preallocation has a positive effect on insertion times for



std::list, as expected. The time spent on memory allocation is significantly reduced because the
space for the maximum number of elements is allocated in advance.

However, I noticed that preallocation might not have a substantial impact on removal times.
Since std::list still requires linear traversal to find the element to remove, the removal times
remain relatively high.

Compared with std::vector and std::set, preallocated stbd::list can now compete better in terms
of insertion times. However, std::vector remains more efficient during removals due to its
constant-time random access.

Surprising Result: The fast insertion times for std::set.

The insertion times for std::set are unexpectedly fast compared to both std::vector and std::list,
even though std::set is a balanced binary search tree. In theory, balanced binary search trees
have higher constant factors in their time complexity compared to dynamic arrays (std::vector)
or linked lists (std::list).

One possible explanation for this result could be the efficiency of the underlying data structure
implementation or compiler optimisations that have minimised the constant factors for std::set
operations in this particular experiment.

Surprising Result: The slow removal times for std::set.

While std::set is expected to provide efficient ordered removals due to its binary search tree
structure, the actual removal times for std::set are significantly higher than expected, especially
for larger sequences.

This observation might be because of the logarithmic time complexity of removals from a
balanced binary search tree. As the number of elements increases, the logarithmic factor has a
noticeable impact on the removal times, making them slower than std::vector for larger
sequences.

Expected Result: std::vector outperforming std::list in removals.

The observation that std::vector performs better than std::list in removal times aligns with
expectations. Since std::vector provides constant-time random access, it can efficiently remove
elements by directly accessing the required position without the need for linear traversal.

Expected Result: std::list outperforming std::vector in insertions.

The faster insertion times for std::list were as expected because linked lists allow for efficient
insertions anywhere in the list, whereas dynamic arrays like std::vector might require shifting
elements during insertions.



Conclusion:

Preallocating std::list can be a useful optimization to improve insertion times by avoiding
frequent memory allocations. However, it doesn't change the fundamental characteristics of
std::list, where removals still require linear time traversal. For scenarios where frequent
insertions are essential and random removals are not the primary concern, preallocated std::list
can be a competitive option. For applications with a balance of insertions and random removals,
std::set might still offer a better overall performance. On the other hand, if frequent random
access and sorting are involved, std::vector might be a better choice. In this particular problem
of generating random integers and sorting them incrementally, using a std::vector for shuffling
and a std::list for insertion sort. The choice of the data structure depends on the specific
requirements and access patterns of the application.


